aaa
Newsletter Pop-up

Reference – Kopriva, dugo poznata vlaknasta biljka s novim perspektivama

Reference na stranici: Kopriva, dugo poznata vlaknasta biljka s novim perspektivama

1. Hartl A., Vogl C. Dry Matter and Fiber Yields, and the Fiber Characteristics of Five Nettle Clones (Urtica dioica L.) Organically Grown in Austria for Potential Textile Use. Am. J. Altern. Agric. 2002;17:195–200. doi: 10.1079/AJAA200222. [CrossRef] []
2. Bacci L., Baronti S., Predieri S., Di Virgilio N. Fiber Yield and Quality of Fiber Nettle (Urtica dioica L.) Cultivated in Italy. Ind. Crops Prod. 2009;29:480–484. doi: 10.1016/j.indcrop.2008.09.005. [CrossRef] []
3. Harwood J., Horne M., Waldron D. Cultivating Stinging Nettle (Urtica dioica) for Fibre Production in the UK. Asp. Appl. Biol. 2010;101:133–138. []
4. Jankauskienė Z., Gruzdevienė E. Changes in the Productivity of Wild and Cultivated Stinging Nettle (Urtica dioica L.) as Influenced by the Planting Density and Crop Age. Zemdirb. Agric. 2015;102:31–40. doi: 10.13080/z-a.2015.102.004. [CrossRef] []
5. Kregiel D., Pawlikowska E., Antolak H. Urtica Spp.: Ordinary Plants with Extraordinary Properties. Molecules. 2018;23:1664. doi: 10.3390/molecules23071664. [PMC free article] [PubMed] [CrossRef] []
6. Andrew J., Dhakal H. Sustainable Biobased Composites for Advanced Applications: Recent Trends and Future Opportunities—A Critical Review. Compos. Part C Open Access. 2022;7:100220. doi: 10.1016/j.jcomc.2021.100220. [CrossRef] []
7. Shah D. Developing Plant Fibre Composites for Structural Applications by Optimising Composite Parameters: A Critical Review. J. Mater. Sci. 2013;48:6083–6107. doi: 10.1007/s10853-013-7458-7. [CrossRef] []
8. Meirhaeghe C. Évaluation de la Disponibilité et de L’accessibilité de Fibres Végétales à Usage Matériaux en France. French Environment and Energy Management Agency; Angers, France: 2011. 84p Report Fibres Recherche Développement ADEME. []
9. Di Virgilio N., Papazoglou E., Jankauskiene Z., Lonardo S., Praczyk M., Wielgusz K. The Potential of Stinging Nettle (Urtica dioica L.) as a Crop with Multiple Uses. Ind. Crops Prod. 2015;68:42–49. doi: 10.1016/j.indcrop.2014.08.012. [CrossRef] []
10. Vogl C., Hartl A. Production and Processing of Organically Grown Fiber Nettle (Urtica dioica L.) and Its Potential Use in the Natural Textile Industry: A Review. Am. J. Altern. Agric. 2003;18:119–128. doi: 10.1079/AJAA200242. [CrossRef] []
11. Jeannin T., Yung L., Evon P., Labonne L., Ouagne P., Lecourt M., Cazaux D., Chalot M., Placet V. Native Stinging Nettle (Urtica dioica L.) Growing Spontaneously under Short Rotation Coppice for Phytomanagement of Trace Element Contaminated Soils: Fibre Yield, Processability and Quality. Ind. Crops Prod. 2020;145:111997. doi: 10.1016/j.indcrop.2019.111997. [CrossRef] []
12. Taylor K. Biological Flora of the British Isles: Urtica dioica L. J. Ecol. 2009;97:1436–1458. doi: 10.1111/j.1365-2745.2009.01575.x. [CrossRef] []
13. Wonglersak R., Cronk Q., Percy D. Salix Transect of Europe: Structured Genetic Variation and Isolation-by-Distance in the Nettle Psyllid, Trioza urticae (Psylloidea, Hemiptera), from Greece to Arctic Norway. Biodivers. Data J. 2017;5:e10824. doi: 10.3897/BDJ.5.e10824. [PMC free article] [PubMed] [CrossRef] []
14. Windler R., Rast-Eicher A., Mannering U. Nessel und Flachs: Textilfunde aus einem frühmittelalterlichen Mädchengrab in Flurlingen (Kanton Zürich) Archeol. Svizz. 1995;18:155–161. doi: 10.5169/seals-15357. [CrossRef] []
15. Edom G. From Sting to Spin—A History of Nettle Fibre. Revised ed. Urtica Books; Bognor Regis, UK: 2019. []
16. Bredemann G. Die Große Brennessel Urtica dioica L. Akademie-Verlag; Berlin, Germany: 1959. 137p []
17. Dreyer J. Die Fasernessel als Nachwachsender Rohstoff. Leistungsprüfung von Fasernesseln (Urtica dioica L., Große Brennessel) Unter Besonderer Berücksichtigung der Phänotypischen Differenzierung Anbauwürdiger Klone. Verlag Dr. Kovac; Hamburg, Germany: 1999. Schriftenreihe Naturwissenschaftliche Forschungsergebnisse. []
18. Harwood J., Edom G. Nettle Fibre: Its Prospects, Uses and Problems in Historical Perspective. Text. Hist. 2012;43:107–119. doi: 10.1179/174329512X13284471321244. [CrossRef] []
19. Dreyling G. Die Fasernessel (Urtica dioica L.), eine wiederentdeckte alte Kulturpflanze. Umweltwiss. Schadst. Forsch. 2002;14:125. doi: 10.1007/BF03038769. [CrossRef] []
20. Bredemann G. Die Bestimmung des Fasergehaltes dei Massenuntersuchungen von Hanf, Flachs, Fasernesseln und anderen Bastfaserpflanzen. Faserforsch. 1942;16:14–39. []
21. Dreyer J., Dreyling G., Feldmann F. Cultivation of Stinging Nettle Urtica dioica L. with High Fibre Content as a Raw Material for the Production of Fibre and Cellulose: Qualitative and Quantitative Differentiation of Ancient Clones. J. Appl. Bot. 1996;70:28–39. []
22. Francken-Welz H. Vergleichende Bewertung der Ertragsfähigkeit und Faserqualität von Lein (Linum usitatissimum L.), Hanf (Cannabis sativa L.) und Fasernessel (Urtica dioica L.) zur Produktion Hochwertiger Industriefasern. Shaker Verlag; Düren, Germany: 2003. []
23. Wurl G., Graf T., Vetter A., Biertümpfel A. 10 Years agrotechnical Trials to Fibre Nettle (Urtica dioica L.) in Thuringia. Prod. Process. Use Nat. Fibres Potsdam. Bornim. 2002;30:95–96. []
24. Biskupek-Korrell B., Schneider C. Schlussbericht Zum Vorhaben “Entwicklung eines Kostengünstigen Vermehrungsverfahrens für Fasernesseln über Somatische Embryogenese und Erzeugung von Verkapselten, Synthetischen Samen”. Deutsche Bundesstiftung Umwelt (DBU); Hannover, Germany: 2012. 57p Final Report DBU Reg. []
25. Biskupek-Korrell B., Knapwost C., Schneider C., Wartenberg S. Schlussbericht Zum Verbundvorhaben “Züchtung Faserreicher, Ertragreicher und Widerstandsfähiger Fasernesselklone Mit Guten Faserqualitäten und Entwicklung eines Effizienten und Kostengünstigen Vermehrungsverfahrens, Teilvorhaben 1: Fasernesselzüchtung und Entwicklung eines Effizienten Vermehrungsverfahrens”. Agency for Renewable Resources (FNR); Gülzow, Germany: 2013. 58p Final Report FNR Reg. []
26. Fischer H., Gusovius H., Lühr C., Rödel P., Schneider C., Kreye S., Machmüller A., Rottmann-Meyer M., Beckhaus H. Schlussbericht zum Verbundvorhaben “InBeNeFa—Verbundvorhaben: Entwicklung einer Industriellen Bereitstellungskette von Brennnesseljungpflanzen bis zur Nesselfaser”. Faserinstitut Bremen; Bremen, Germany: 2019. 117p Research Report of the Faserinstitut Bremen. []
27. Böhmer G. Technische Geschichte der Pflanzen. Weidmannsche Buchhandlung; Leipzig, Germany: 1794. []
28. Richter O. Vorträge des Vereins zur Verbreitung Naturwissenschaftlicher Kenntnisse. Kalisynditat; Berlin, Germany: 1915. Alte und neue Textilpflanzen. []
29. Sethmann A. Ph.D. Thesis. Universität Hamburg; Hamburg, Germany: 2004. Girardinia Diversifolia (LINK) FRIIS (Urticaceae)-Eine Neue Faserpflanze—Untersuchungen zu den Morphologischen und Mechanischen Fasercharakteristika. []
30. Schnegelsberg G. Handbuch der Faser—Theorie und Systematik der Faser. Deutscher Fachverlag; Frankfurt, Germany: 1999. []
31. Subedee B., Chaudhary R., Uprety Y., Dorji T. Socio-Ecological Perspectives of Himalayan Giant Nettle (Girardinia diversifolia (Link) Friis) in Nepal. J. Nat. Fibers. 2020;17:9–17. doi: 10.1080/15440478.2018.1458684. [CrossRef] []
32. von Roeßler-Ladé A. Die Nessel eine Gespinstpflanze: Mit Anleitung zu deren Anbau und Weiteren Bearbeitung. August Schroeter’s Verlag; Stuttgart, Germany: 1916. []
33. Bouché C., Grothe H. Ramie, Rheea, Chinagras und Nesselfaser. Verlag von Julius Springer; Berlin, Germany: 1884. []
34. Ganswindt A. Die Bastfasern und ihre Technische Verarbeitung—Zum Gebrauche an Färbereischulen, Technischen Hochschulen, sowie zum Selbstunterricht. A. Hartleben’s Verlag; Leipzig, Germany: 1922. Chemisch-Technische Bibliothek—Band 371. []
35. Schulz W. Referat über die Erfahrungen in der Verarbeitung der Brennnessel. Druck von H. Scherokosz; Berlin, Germany: 1920. []
36. Lüdtke M., Kling R., Scheithauer G. Aufbereitung und Verspinnung der Wildnesselfaser. Dtsch. Leinen-Ind. 1944;4:41–43. []
37. Elster J. Nesselstängelschälmaschine—Mit zwei verschiedenen Geschwindigkeit umlaufenden endlosen Schindtüchern. 158675. German Patent. 1940 May 10;
38. Elster J. Verfahren Zum Anführen und Naßbehandeln der von Stengeln abgelösten Nesselrindenbänder. 158676. German Patent. 1940 May 10;
39. Dreyer J., Müssig J., Koschke N., Ibenthal W., Harig H. Comparison of Enzymatically Separated Hemp and Nettle Fibre to Chemically Separated and Steam Exploded Hemp Fibre. J. Ind. Hemp. 2002;7:43–59. doi: 10.1300/J237v07n01_05. [CrossRef] []
40. Müssig J., Amaducci S., Bourmaud A., Beaugrand J., Shah D. Transdisciplinary Top-down Review of Hemp Fibre Composites: From an Advanced Product Design to Crop Variety Selection—A Critical Review. Compos. Part C Open Access. 2020;2:100010. doi: 10.1016/j.jcomc.2020.100010. [CrossRef] []
41. Schlüter M., Meyer M., Risse S., Räbiger N., Fischer H., Müssig J., Bluhm C. Sustainable Production of High Quality Hemp Fibres by Enzymatic Modification; Proceedings of the 27th International Exhibition-Congress on Chemical Engineering, Environmental Protection and Biotechnology; Frankfurt, Germany. 22–23 May 2003. []
42. Henning T., Quandt D., Große-Veldmann B., Monro A., Weigend M. Weeding the Nettles II: A Delimitation of “Urtica dioica L.” (Urticaceae) Based on Morphological and Molecular Data, Including a Rehabilitation of Urtica gracilis Ait. Phytotaxa. 2014;162:61–83. doi: 10.11646/phytotaxa.162.2.1. [CrossRef] []
43. Wu Z., Liu J., Provan J., Wang H., Chen C., Cadotte M., Luo Y., Amorim B., Li D., Milne R. Testing Darwin’s Transoceanic Dispersal Hypothesis for the Inland Nettle Family (Urticaceae) Ecol. Lett. 2018;21:1515–1529. doi: 10.1111/ele.13132. [PubMed] [CrossRef] []
44. Šrutek M., Teckelmann M. Review of Biology and Ecology of Urtica dioica. Preslia Praha. 1998;70:1–19. []
45. Cronk Q., Hidalgo O., Pellicer J., Percy D., Leitch I. Salix Transect of Europe: Variation in Ploidy and Genome Size in Willow-Associated Common Nettle, Urtica dioica L. Sens. Lat., from Greece to Arctic Norway. Biodivers. Data J. 2016;4:e10003. doi: 10.3897/BDJ.4.e10003. [PMC free article] [PubMed] [CrossRef] []
46. Klimešová J. The Effects of Timing and Duration of Floods on Growth of Yound Plants of Phalaris Arundinacea L. and Urtica dioica L.: An Experimental Study. Aquat. Bot. 1994;48:21–29. doi: 10.1016/0304-3770(94)90071-X. [CrossRef] []
47. Bisht S., Bhandari S., Bisht N. Urtica dioica L.: An Undervalued, Economically Important Plant. Agric. Sci. Res. J. 2012;2:250–252. []
48. Rutto L., Ansari M., Brandt M. Biomass Yield and Dry Matter Partitioning in Greenhouse-Grown Stinging Nettle under Different Fertilization Regimes. HortTechnology. 2012;22:751–756. doi: 10.21273/HORTTECH.22.6.751. [CrossRef] []
49. Nkhabu K., Liphoto M., Ntahane T., Senoko K. Genetic Diversity of Stinging Nettle (Urtica dioica) by Agro Morphological Markers. Eur. J. Bot. Plant Sci. Phytol. 2021;6:51–68. []
50. Guil-Guerrero J., Rebolloso-Fuentes M., Isasa M. Fatty Acids and Carotenoids from Stinging Nettle (Urtica dioica L.) J. Food Compos. Anal. 2003;16:111–119. doi: 10.1016/S0889-1575(02)00172-2. [CrossRef] []
52. Shannon R., Holsinger K. The Genetics of Sex Determination in Stinging Nettle (Urtica dioica) Sex. Plant Reprod. 2007;20:35–43. doi: 10.1007/s00497-006-0041-5. [CrossRef] []
53. Große-Veldmann B., Weigend M. The Geometry of Gender: Hyper-Diversification of Sexual Systems in Urtica L. (Urticaceae) Cladistics. 2017;34:131–150. doi: 10.1111/cla.12193. [PubMed] [CrossRef] []
54. Wheeler K. A Natural History of Nettles. Trafford Publishing; Victoria, BC, Canada: 2004. 318p []
55. Draghi F. Ph.D. Thesis. University of Lorraine; Nancy, France: 2005. L’ortie Dioïque (Urtica dioica L.): Étude Bibliographique. []
56. Popay I. Urtica dioica (Stinging Nettle): Invasive Species Compedium. Centre for Agriculture and Bioscience International (CABI); Wallingford, UK: 2014. []
57. Rutto L., Xu Y., Ramirez E., Brandt M. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.) Int. J. Food Sci. 2013;2013:857120. doi: 10.1155/2013/857120. [PMC free article] [PubMed] [CrossRef] []
58. Singh M., Kali G. Study on Morpho-Anatomical and Histo-Chemical Characterisation of Stinging Nettle, Urtica dioica L. in Uttarakhand, India. J. Pharmacogn. Phytochem. 2019;8:4325–4331. []
59. Thurston E. Morphology, Fine Structure, and Ontogeny of the Stinging Emergence of Urtica dioica. Am. J. Bot. 1974;61:809–817. doi: 10.1002/j.1537-2197.1974.tb12306.x. [CrossRef] []
60. Emmelin N., Feldberg W. The Mechanism of the Sting of the Common Nettle (Urtica urens) J. Physiol. 1947;106:440–455. doi: 10.1113/jphysiol.1947.sp004225. [PMC free article] [PubMed] [CrossRef] []
61. Collier H., Chesher G. Identification of 5-Hydroxytryptamine in the Sting of the Nettle (Urtica dioica) Br. J. Pharmacol. Chemother. 1956;11:186–189. doi: 10.1111/j.1476-5381.1956.tb01051.x. [PMC free article] [PubMed] [CrossRef] []
62. Cummings A., Olsen M. Mechanism of Action of Stinging Nettles. Wilderness Environ. Med. 2011;22:136–139. doi: 10.1016/j.wem.2011.01.001. [PubMed] [CrossRef] []
63. Tuberville T., Dudley P., Pollard A. Responses of Invertebrate Herbivores to Stinging Trichomes of Urtica dioica and Laportea canadensis. Oikos. 1996;75:83–88. doi: 10.2307/3546324. [CrossRef] []
64. Pullin A., Gilbert J. The Stinging Nettle, Urtica dioica, Increases Trichome Density after Herbivore and Mechanical Damage. Oikos. 1989;54:275–280. doi: 10.2307/3565285. [CrossRef] []
65. Pollard A., Briggs D. Genecological Studies of Urtica dioica L. I. The Nature of Intraspecific Variation in U. dioica. New Phytol. 1982;92:453–470. doi: 10.1111/j.1469-8137.1982.tb03403.x. [CrossRef] []
66. Pollard A., Briggs D. Genecological Studies of Urtica dioica L, II, Patterns of Variation at Wicken Fen, Cambridgeshire, England. New Phytol. 1984;96:483–499. doi: 10.1111/j.1469-8137.1984.tb03582.x. [CrossRef] []
67. Luna T. Propagation Protocol for Stinging Nettle (Urtica dioica) Nativ. Plants J. 2001;2:110–111. doi: 10.3368/npj.2.2.110. [CrossRef] []
68. Rosnitschek-Schimmel I. Biomass and Nitrogen Partitioning in a Perennial and an Annual Nitrophilic Species of Urtica. Z. Pflanzenphysiol. 1983;109:215–225. doi: 10.1016/S0044-328X(83)80223-2. [CrossRef] []
69. Basset I., Crompton C., Woodland D. The Biology of Canadian Weeds: 21. Urtica dioica L. Can. J. Plant Sci. 1977;57:491–498. doi: 10.4141/cjps77-072. [CrossRef] []
70. Grime J., Hodgson J., Hunt R. Comparative Plant Ecology: A Functional Approach to Common British Species. Castlepoint Press; Hoboken, NJ, USA: 1988. 752p []
71. Klimešová J. Population Dynamics of Phalaris arundinacea L. and Urtica dioica L. in a Floodplain during a Dry Period. Wetl. Ecol. Manag. 1995;3:79–85. doi: 10.1007/BF00177690. [CrossRef] []
72. Gravis A. Recherches Anatomiques Sur Les Organes Végétatifs de l’Urtica Dioica L. Volume 1. Librairie Médicale & Scientifique de A. Manceaux (Bruxelles); Brussels, Belgium: 1885. 256p []
73. Dreyer J., Edom G. Bast and Other Plant Fibres. Woodhead Publishing; Sawston, UK: 2005. Pineapple, Curauá, Craua (Caroá), Macambira, Nettle, Sunn Hemp, Mauritius Hemp and Fique; pp. 322–344. (Woodhead Publishing Series in Textile). []
74. Franck R. Bast and Other Plant Fibres. 1st ed. Woodhead Publishing; Sawston, UK: 2005. []
75. Weigend M. Urtica dioica Subsp. cypria, with a Re-Evaluation of the U. dioica Group (Urticaceae) in Western Asia. Willdenowia. 2006;36:811–822. doi: 10.3372/wi.36.36212. [CrossRef] []
76. Weigend M., Luebert F. Weeding the Nettles I: Clarifying Species Limits in Perennial, Rhizomatous Urtica (Urticaceae) from Southern and Central Chile and Argentina. Phytotaxa. 2009;2:1–12. doi: 10.11646/phytotaxa.2.1.1. [CrossRef] []
77. Große-Veldmann B., Weigend M. Weeding the Nettles III: Named Nonsense versus Named Morphotypes in European Urtica dioica L. (Urticaceae) Phytotaxa. 2015;208:239–260. doi: 10.11646/phytotaxa.208.4.1. [CrossRef] []
78. Woodland D. Biosystematics of the Perennial North American Taxa of Urtica. II. Taxonomy. Syst. Bot. 1982;7:282–290. doi: 10.2307/2418389. [CrossRef] []
79. Rejlová L., Chrtek J., Trávníček P., Lučanová M., Vít P., Urfus T. Polyploid Evolution: The Ultimate Way to Grasp the Nettle. PLoS ONE. 2019;14:e0218389. doi: 10.1371/journal.pone.0218389. [PMC free article] [PubMed] [CrossRef] []
80. Große-Veldmann B. Ph.D. Thesis. Universität Bonn; Bonn, Germany: 2016. Systematics, Taxonomy, and Evolution of Urtica L. (Urticaceae) []
81. Rejlová L., Böhmová A., Chumová Z., Hořčicová Š., Josefiová J., Schmidt P.-A., Trávníček P., Urfus T., Vít P., Chrtek J. Disparity between Morphology and Genetics in Urtica dioica (Urticaceae) Bot. J. Linn. Soc. 2021;195:606–621. doi: 10.1093/botlinnean/boaa076. [CrossRef] []
82. Pérez-Escobar O., Bogarín D., Schley R., Bateman R., Gerlach G., Harpke D., Brassac J., Fernández-Mazuecos M., Dodsworth S., Hágsater E., et al. Resolving Relationships in an Exceedingly Young Neotropical Orchid Lineage Using Genotyping-by-Sequencing Data. Mol. Phylogenet. Evol. 2020;144:106672. doi: 10.1016/j.ympev.2019.106672. [PubMed] [CrossRef] []
83. Escudero M., Eaton D., Hahn M., Hipp A. Genotyping-by-Sequencing as a Tool to Infer Phylogeny and Ancestral Hybridization: A Case Study in Carex (Cyperaceae) Mol. Phylogenet. Evol. 2014;79:359–367. doi: 10.1016/j.ympev.2014.06.026. [PubMed] [CrossRef] []
84. Farag M., Weigend M., Luebert F., Brokamp G., Wessjohann L. Phytochemical, Phylogenetic, and Anti-Inflammatory Evaluation of 43 Urtica Accessions (Stinging Nettle) Based on UPLC-Q-TOF-MS Metabolomic Profiles. Phytochemistry. 2013;96:170–183. doi: 10.1016/j.phytochem.2013.09.016. [PubMed] [CrossRef] []
85. Leitch I., Bennett M. Flow Cytometry with Plant Cells. John Wiley & Sons, Ltd.; Weinheim, Germany: 2007. Genome Size and Its Uses: The Impact of Flow Cytometry; pp. 153–176. []
86. Kron P., Suda J., Husband B. Applications of Flow Cytometry to Evolutionary and Population Biology. Annu. Rev. Ecol. Evol. Syst. 2007;38:847–876. doi: 10.1146/annurev.ecolsys.38.091206.095504. [CrossRef] []
87. Dolezel J., Bartos J., Voglmayr H., Greilhuber J. Nuclear DNA Content and Genome Size of Trout and Human. Cytometry A. 2003;51:127–128. doi: 10.1002/cyto.a.10013. [PubMed] [CrossRef] []
88. Fischer S. Ph.D. Thesis. INSA de Lyon; Villeurbanne, France: 2013. Modélisation de L’évolution de la Taille des Génomes et de leur Densité en Gènes par Mutations Locales et Grands Réarrangements Chromosomiques. []
89. Garcia S., Leitch I., Anadon-Rosell A., Canela M., Gálvez F., Garnatje T., Gras A., Hidalgo O., Johnston E., Mas de Xaxars G., et al. Recent Updates and Developments to Plant Genome Size Databases. Nucleic Acids Res. 2014;42:1159–1166. doi: 10.1093/nar/gkt1195. [PMC free article] [PubMed] [CrossRef] []
90. Barow M., Meister A. Endopolyploidy in Seed Plants Is Differently Correlated to Systematics, Organ, Life Strategy and Genome Size. Plant Cell Environ. 2003;26:571–584. doi: 10.1046/j.1365-3040.2003.00988.x. [CrossRef] []
91. Bainard J., Bainard L., Henry T., Fazekas A., Newmaster S. A Multivariate Analysis of Variation in Genome Size and Endoreduplication in Angiosperms Reveals Strong Phylogenetic Signal and Association with Phenotypic Traits. New Phytol. 2012;196:1240–1250. doi: 10.1111/j.1469-8137.2012.04370.x. [PubMed] [CrossRef] []
92. Bainard J., Husband B., Baldwin S., Fazekas A., Gregory T., Newmaster S., Kron P. The Effects of Rapid Desiccation on Estimates of Plant Genome Size. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2011;19:825–842. doi: 10.1007/s10577-011-9232-5. [PubMed] [CrossRef] []
93. Pellicer J., Leitch I. The Plant DNA C-Values Database (Release 7.1): An Updated Online Repository of Plant Genome Size Data for Comparative Studies. New Phytol. 2020;226:301–305. doi: 10.1111/nph.16261. [PubMed] [CrossRef] []
94. Pustahija F., Brown S., Bogunić F., Bašić N., Muratović E., Ollier S., Hidalgo O., Bourge M., Stevanović V., Siljak-Yakovlev S. Small Genomes Dominate in Plants Growing on Serpentine Soils in West Balkans, an Exhaustive Study of 8 Habitats Covering 308 Taxa. Plant Soil. 2013;373:427–453. doi: 10.1007/s11104-013-1794-x. [CrossRef] []
95. Shokrzadeh M., Mirshafa A., Yekta Moghaddam N., Birjandian B., Shaki F. Mitochondrial Dysfunction Contribute to Diabetic Neurotoxicity Induced by Streptozocin in Mice: Protective Effect of Urtica Dioica and Pioglitazone. Toxicol. Mech. Methods. 2018;28:499–506. doi: 10.1080/15376516.2018.1459993. [PubMed] [CrossRef] []
96. Al-Tameme H., Hadi M., Hameed I. Phytochemical Analysis of Urtica dioica Leaves by Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry. J. Pharmacogn. Phytother. 2015;7:238–252. doi: 10.5897/JPP2015.0361. [CrossRef] []
97. Maobe M.A.G., Nyarango R.M. Fourier Transformer Infra-Red Spectrophotometer Analysis of Urtica dioica Medicinal Herb Used for the Treatment of Diabetes, Malaria and Pneumonia in Kisii Region, Southwest Kenya. World Appl. Sci. J. 2013;8:1128–1135. []
98. Pinelli P., Ieri F., Vignolini P., Bacci L., Baronti S., Romani A. Extraction and HPLC Analysis of Phenolic Compounds in Leaves, Stalks, and Textile Fibers of Urtica dioica L. J. Agric. Food Chem. 2008;56:9127–9132. doi: 10.1021/jf801552d. [PubMed] [CrossRef] []
99. Grauso L., Emrick S., Bonanomi G., Lanzotti V. Metabolomics of the Alimurgic Plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by Combined NMR and GC–MS Analysis. Phytochem. Anal. 2019;30:535–546. doi: 10.1002/pca.2845. [PubMed] [CrossRef] []
100. Brahmi-Chendouh N., Piccolella S., Nigro E., Hamri-Zeghichi S., Madani K., Daniele A., Pacifico S. Urtica dioica L. Leaf Chemical Composition: A Never-Ending Disclosure by Means of HR-MS/MS Techniques. J. Pharm. Biomed. Anal. 2021;195:113892. doi: 10.1016/j.jpba.2021.113892. [PubMed] [CrossRef] []
101. Opačić N., Radman S., Fabek Uher S., Benko B., Voća S., Šic Žlabur J. Nettle Cultivation Practices—From Open Field to Modern Hydroponics: A Case Study of Specialized Metabolites. Plants. 2022;11:483. doi: 10.3390/plants11040483. [PMC free article] [PubMed] [CrossRef] []
102. Roslon W., Weglarz Z. Polyphenolic Acids of Female and Male Forms of Urtica dioica. Acta Hortic. 2003;597:101–104. doi: 10.17660/ActaHortic.2003.597.12. [CrossRef] []
103. Repajić M., Cegledi E., Zorić Z., Pedisić S., Elez Garofulić I., Radman S., Palčić I., Dragović-Uzelac V. Bioactive Wompounds in Wild Nettle (Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations. Foods. 2021;10:190. doi: 10.3390/foods10010190. [PMC free article] [PubMed] [CrossRef] []
104. Koczka N., Petersz D., Stefanovits-Banyai E. Total Phenol Content and Antioxidant Capacity (FRAP) of Urtica dioica L. Leaf Extratcs. Acta Hortic. 2015;1099:207–210. doi: 10.17660/ActaHortic.2015.1099.21. [CrossRef] []
105. Biesiada A., Kucharska A., Sokó A., Kus A. Effect of the Age of Plantation and Harvest Term on Chemical Composition and Antioxidant Activity of Stinging Nettle (Urtica dioica L.) Ecol. Chem. Eng. 2010;17:1061–1067. []
106. Marotti I., Frassineti E., Trebbi G., Alpi M., D’Amen E., Dinelli G. Health-Promoting Phytochemicals of Stinging Nettle (Urtica dioica L.) Grown under Organic Farming in Italian Environments. Ind. Crops Prod. 2022;182:114903. doi: 10.1016/j.indcrop.2022.114903. [CrossRef] []
107. Paulauskienė A., Tarasevičienė Ž., Laukagalis V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle (Urtica dioica L.) Plants. 2021;10:686. doi: 10.3390/plants10040686. [PMC free article] [PubMed] [CrossRef] []
108. Kőszegi K., Békássy-Molnár E., Koczka N., Kerner T., Stefanovits-Bányai E. Changes in Total Polyphenol Content and Antioxidant Capacity of Stinging Nettle (Urtica dioica L.) from Spring to Autumn. Period. Polytech. Chem. Eng. 2020;64:548–554. doi: 10.3311/PPch.14338. [CrossRef] []
109. Kosolapov V.M., Cherniavskih V.I., Zarudny V.A., Mazur K., Konieczna A., Tseiko L., Dumacheva E.V., Dumachev D.V. Observations on the Productivity of Breeding Specimens of Urtica dioica L. from European Russian Ecotopes in Comparison with the Breeding Variety under Field Crop Conditions. Agronomy. 2022;12:76. doi: 10.3390/agronomy12010076. [CrossRef] []
110. Sadowska A., Świderski F. Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods. Appl. Sci. 2020;10:6255. doi: 10.3390/app10186255. [CrossRef] []
111. Tiotiu A., Brazdova A., Longé C., Gallet P., Morisset M., Leduc V., Hilger C., Broussard C., Couderc R., Sutra J.-P., et al. Urtica dioica Pollen Allergy: Clinical, Biological, and Allergomics Analysis. Ann. Allergy Asthma Immunol. 2016;117:527–534. doi: 10.1016/j.anai.2016.09.426. [PubMed] [CrossRef] []
112. Đurović S., Pavlić B., Šorgić S., Popov S., Savić S., Petronijević M., Radojković M., Cvetanović A., Zeković Z. Chemical Composition of Stinging Nettle Leaves Obtained by Different Analytical Approaches. J. Funct. Foods. 2017;32:18–26. doi: 10.1016/j.jff.2017.02.019. [CrossRef] []
113. Jaja N., Codling E.E., Rutto L.K., Timlin D., Reddy V.R. Poultry Litter and Inorganic Fertilization: Effects on Biomass Yield, Metal and Nutrient Concentration of Three Mixed-Season Perennial Forages. Agronomy. 2022;12:570. doi: 10.3390/agronomy12030570. [CrossRef] []
114. Kara D. Evaluation of Trace Metal Concentrations in Some Herbs and Herbal Teas by Principal Component Analysis. Food Chem. 2009;114:347–354. doi: 10.1016/j.foodchem.2008.09.054. [CrossRef] []
115. Rafajlovska V., Kavrakovski Z., Simonovska J., Srbinoska M. Determination of Protein and Mineral Contents in Stinging Nettle. Qual. Life. 2013;7:26–30. doi: 10.7251/QOL1301026R. [CrossRef] []
116. Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2011. []
117. Tack F., Verloo M. Metal Contents in Stinging Nettle (Urtica dioica L.) as Affected by Soil Characteristics. Sci. Total Environ. 1996;192:31–39. doi: 10.1016/0048-9697(96)05289-8. [CrossRef] []
118. Khan K., Joergensen R. Decomposition of Heavy Metal Contaminated Nettles (Urtica dioica L.) in Soils Subjected to Heavy Metal Pollution by River Sediments. Chemosphere. 2006;65:981–987. doi: 10.1016/j.chemosphere.2006.03.038. [PubMed] [CrossRef] []
119. Toubal S., Bouchenak O., Elhaddad D., Yahiaoui K., Boumaza S., Arab K. MALDI-TOF MS Detection of Endophytic Bacteria Associated with Great Nettle (Urtica dioica L.), Grown in Algeria. Pol. J. Microbiol. 2018;67:67–72. doi: 10.5604/01.3001.0011.6145. [PubMed] [CrossRef] []
120. Wenneker M., Verdel M., Groeneveld R., Kempenaar C., van Beuningen A., Janse J. Ralstonia (Pseudomonas) Solanacearum Race 3 (Biovar 2) in Surface Water and Natural Weed Hosts: First Report on Stinging Nettle (Urtica dioica) Eur. J. Plant Pathol. 1999;105:307–315. doi: 10.1023/A:1008795417575. [CrossRef] []
121. Mojicevic M., D’Agostino P., Nikodinovic-Runic J., Vasiljevic B., Gulder T., Vojnovic S. Antifungal Potential of Bacterial Rhizosphere Isolates Associated with Three Ethno-Medicinal Plants (Poppy, Chamomile, and Nettle) Int. Microbiol. 2019;22:343–353. doi: 10.1007/s10123-019-00054-8. [PubMed] [CrossRef] []
122. Raveau R., Fontaine J., Bert V., Perlein A., Tisserant B., Ferrant P., Lounès-Hadj Sahraoui A. In Situ Cultivation of Aromatic Plant Species for the Phytomanagement of an Aged-Trace Element Polluted Soil: Plant Biomass Improvement Options and Techno-Economic Assessment of the Essential Oil Production Channel. Sci. Total Environ. 2021;789:147944. doi: 10.1016/j.scitotenv.2021.147944. [PubMed] [CrossRef] []
123. Yung L., Bertheau C., Tafforeau F., Zappelini C., Valot B., Maillard F., Selosse M.-A., Viotti C., Chiapusio G., Chalot M. Partial Overlap of Fungal Communities Associated with Nettle and Poplar Roots When Co-Occurring at a Trace Metal Contaminated Site. Sci. Total Environ. 2021;782:146692. doi: 10.1016/j.scitotenv.2021.146692. [PubMed] [CrossRef] []
124. Davis B.N.K. The Colonization of Isolated Patches of Nettles (Urtica dioica L.) by Insects. J. Appl. Ecol. 1975;12:1–14. doi: 10.2307/2401713. [CrossRef] []
125. Davis B.N.K. The European Distribution of Insects on Stinging Nettles, Urtica dioica L.: A Field Survey. Boll. Zool. 1989;56:321–326. doi: 10.1080/11250008909355658. [CrossRef] []
126. Perrin R.M. The Role of the Perennial Stinging Nettle, Urtica dioica, as a Reservoir of Beneficial Natural Enemies. Ann. Appl. Biol. 1975;81:289–297. doi: 10.1111/j.1744-7348.1975.tb01644.x. [CrossRef] []
127. Davis B. The Hemiptera and Coleoptera of Stinging Nettle (Urtica dioica L.) in East Anglia. J. Appl. Ecol. 1973;10:213–237. doi: 10.2307/2404726. [CrossRef] []
128. James D., Lauby G., Seymour L., Buckley K. Beneficial Insects Associated with Stinging Nettle, Urtica dioica Linnaeus, in Central Washington State. Pan-Pac. Entomol. 2015;91:82–90. doi: 10.3956/2014-91.1.082. [CrossRef] []
129. Alhmedi A., Haubruge E., Bodson B., Francis F. Aphidophagous Guilds on Nettle (Urtica dioica) Strips Close to Fields of Green Pea, Rape and Wheat. Insect Sci. 2007;14:419–424. doi: 10.1111/j.1744-7917.2007.00169.x. [CrossRef] []
130. Alhmedi A., Haubruge E., Francis F. Effect of Stinging Nettle Habitats on Aphidophagous Predators and Parasitoids in Wheat and Green Pea Fields with Special Attention to the Invader Harmonia Axyridis Pallas (Coleoptera: Coccinellidae) Entomol. Sci. 2009;12:349–358. doi: 10.1111/j.1479-8298.2009.00342.x. [CrossRef] []
131. Alhmedi A., Haubruge E., D’hoedt S., Francis F. Quantitative Food Webs of Herbivore and Related Beneficial Community in Non-Crop and Crop Habitats. Biol. Control. 2011;58:103–112. doi: 10.1016/j.biocontrol.2011.04.005. [CrossRef] []
132. Zabel J., Tscharntke T. Does Fragmentation of Urtica Habitats Affect Phytophagous and Predatory Insects Differentially? Oecologia. 1998;116:419–425. doi: 10.1007/s004420050605. [PubMed] [CrossRef] []
133. Ekesi S., Shah P., Clark S., Pell J. Conservation Biological Control with the Fungal Pathogen Pandora neoaphidis: Implications of Aphid Species, Host Plant and Predator Foraging. Agric. For. Entomol. 2005;7:21–30. doi: 10.1111/j.1461-9555.2005.00239.x. [CrossRef] []
134. Perrin R.M. The Population Dynamics of the Stinging Nettle Aphid, Microlophium Carnosum (Bukt.) Ecol. Entomol. 1976;1:31–40. doi: 10.1111/j.1365-2311.1976.tb01202.x. [CrossRef] []
135. Baverstock J., Porcel M., Clark S., Copeland J., Pell J. Potential Value of the Fibre Nettle Urtica dioica as a Resource for the Nettle Aphid Microlophium carnosum and Its Insect and Fungal Natural Enemies. BioControl. 2010;56:215–223. doi: 10.1007/s10526-010-9330-x. [CrossRef] []
136. Callaway R. Positive Interactions among Plants. Bot. Rev. 1995;61:306–349. doi: 10.1007/BF02912621. [CrossRef] []
137. Franks S. Facilitation in Multiple Life-History Stages: Evidence for Nucleated Succession in Coastal Dunes. Plant Ecol. 2003;168:1–11. doi: 10.1023/A:1024426608966. [CrossRef] []
138. Roberts R., Marrs R., Skeffington R., Bradshaw A. Ecosystem Development on Naturally Colonized China Clay Wastes: I. Vegetation Changes and Overall Accumulation of Organic Matter and Nutrients. J. Ecol. 1981;69:153–161. doi: 10.2307/2259822. [CrossRef] []
139. Prach K., Wade P. Population Characteristics of Expansive Perennial Herbs. Preslia. 1992;64:45–51. []
140. Ruckenbauer P., Burstmayr H., Sturtz A. The Stinging Nettle: Its Reintroduction for Fibre Production. European Commission; Brussels, Belgium: 2002. IENICA Project Report 2002. []
141. Puntieri J., Pyšek P. The Effects of Physical Support and Density on Biomass Production and Size Hierarchies of Galium aparine Populations. Oikos. 1993;67:279–284. doi: 10.2307/3545472. [CrossRef] []
142. Ivins J. Concerning the Ecology of Urtica dioica L. J. Ecol. 1952;40:380–382. doi: 10.2307/2256806. [CrossRef] []
143. Bojović B., Dragana J., Stankovic M. Allelopathic Effect of Aqueous Extracts of Urtica dioica L. on Germination and Growth of Some Cereals; Proceedings of the 2nd International Conference on Plant Biology—21st Symposium of the Serbian Plant Physiology Society; Petnica, Serbia. 17–20 June 2015. []
144. Synowiec A., Nowicka-Połeć A. Effect of Aqueous Extracts of Selected Medicinal Plants on Germination of Windgrass [Apera spica-venti (L.) P. Beauv.] and Lambsquarters (Chenopodium album L.) Seeds. Acta Agrobot. 2016;69:1668. doi: 10.5586/aa.1668. [CrossRef] []
145. Dziamski A., Stypczyńska Z. Allelopathic Effect of Preparations of Betula pendula Roth., Chamomilla recutita L. and Urtica dioica L. on the Initial Growth of Hordeum vulgare L. Acta Agrobot. 2015;68:3–8. doi: 10.5586/aa.2015.007. [CrossRef] []
146. Khan A., Qureshi R., Ullah F., Gilani S. Phytotoxic Effects of Selected Medicinal Plants Collected from Margalla Hills, Islamabad Pakistan. J. Med. Plants Res. 2011;5:5. []
147. Gatti E., Di Virgilio N., Baronti S., Bacci L. Development of Urtica dioica L. Propagation Methods for Organic Production of Fiber; Proceedings of the 16th IFOAM Organic World Congress; Modena, Italy. 16–20 June 2008. []
148. Jankauskienė Z., Gruzdevienė E. Investigation of Stinging Nettle (Urtica dioica L.) in Lithuania. Latg. Natl. Econ. Res. 2010;1:176–186. doi: 10.17770/lner2010vol1.2.1782. [CrossRef] []
149. Ammarellou A., Kazemeitabar K., Najafei H., Mortazavei N., Ammarellou N. Effects of Different Culture Media on Rooting of Urtica dioica L. Stem Cuttings. J. Soil Sci. Environ. Manag. 2012;3:172–175. doi: 10.5897/JSSEM11.029. [CrossRef] []
150. Weglarz Z., Roslon W. Developmental and Chemical Variability of Female and Male Forms of Nettle Urtica dioica L. Acta Hortic. 2000;523:75–80. doi: 10.17660/ActaHortic.2000.523.9. [CrossRef] []
151. Vetter A., Wieser P., Wurl G. Final Report of the Project Plants for Energy and Industry. Thüringer Landesamt für Landwirtschaft und Ländlichen Raum; Dornburg, Germany: 1996. Untersuchungen zum Anbau der Großen Brennessel (Urtica dioica L.) und deren Eignung als Verstärkungsfaser für Kunststoffe. []
152. Kohler K., Schmidtke K., Rauber R., Hoffmann H., Muller S. Eignung verschiedener Pflanzenarten zur Untersaat in Fasernesseln (Urtica dioica L.); Proceedings of the Beiträge zur 5. Wissenschaftstagung Zum ökologischen Landbau (Conference); Berlin, Germany. 23–25 February 1999; pp. 496–500. []
153. Schmidtke K., Rauber R., Kohler K. Ertragsbildung von Fasernsseln (Urtica dioica L.) Mitt. Ges. Pflanzenbauwiss. 1998;11:107–108. []
154. Rexen F. The Stinging Nettle: Its Reintroduction for Fibre Production. Interact. Eur. Netw. Ind. Crops Their Appl. 2002. [(accessed on 1 May 2022)]. Available online: https://www.yumpu.com/en/document/view/11410932
155. Francken-Welz H., Scherr-Triebel M., Léon J. Ertrags- und Qualitätsbildung von Lein, Hanf und Fasernessel in Abhängigkeit von Bestandesdichte und N-Düngung. Mitt. Ges. FuÈr Pflanzenbauwiss. 1999;2:177–178. []
156. Lehne P., Schmidtke K., Rauber R. Ertrag von Fasernesseln im ökologischen Landbau bei unterschiedlicher Nährstoffversorgung. Mitt Ges Pflanzenbauwiss. 2001;13:158–159. []
157. Kakabouki I., Zisi C., Karydogianni S., Priniotakis G., Darawsheh M., Tselia Z. Effect of Nettle (Urtica dioca L.) Density on Fiber Yield and Quality in a Natural Ecosystem under East Mediterranean Conditions. J. Phytol. 2020;12:73–76. doi: 10.25081/jp.2020.v12.6326. [CrossRef] []
158. Radman S., Zutic C., Coga L., Fabek S., Benko B., Toth N. Yield and Mineral Content of Stinging Nettle as Affected by Nitrogen Fertilization. J. Agric. Sci. Technol. 2016;18:1117–1128. []
159. Tavano D., Gallucci T., Camaggio G., Lagioia G. Potential of Dyeing and Fiber Plants in Apulia Region. J. Commod. Sci. Technol. Qual. 2011;50:207–224. []
160. Šrutek M. Growth Responses of Urtica dioica L. to Different Water Table Depth. Plant Ecol. 1997;130:163–169. doi: 10.1023/A:1009774407195. [CrossRef] []
161. Peruzzi A., Martelloni L., Frasconi C., Fontanelli M., Pirchio M., Raffaelli M. Machines for Non-Chemical Intra-Row Weed Control in Narrow and Wide-Row Crops: A Review. J. Agric. Eng. 2017;48:57–70. doi: 10.4081/jae.2017.583. [CrossRef] []
162. Gazoulis I., Kanatas P., Papastylianou P., Tataridas A., Alexopoulou E., Travlos I. Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops. Energies. 2021;14:2478. doi: 10.3390/en14092478. [CrossRef] []
163. Rosnitschek-Schimmel I. Seasonal Dynamics of Nitrogenous Compounds in a Nitrophilic Weed I. Changes in Inorganic and Organic Nitrogen Fractions of the Different Plant Parts of Urtica dioica. Plant Cell Physiol. 1985;26:169–176. doi: 10.1093/oxfordjournals.pcp.a076885. [CrossRef] []
164. Fodor F., Cseh E. Effect of Different Nitrogen-forms and Iron-chelates on the Development of Stinging Nettle. J. Plant Nutr. 1993;16:2239–2253. doi: 10.1080/01904169309364683. [CrossRef] []
165. Biesiada A., Woloszczak E., Sokol-Letowska A., Kucharska A., Nawirska-Olszańska A. The Effect of Nitrogen Form and Dose on Yield, Chemical Composition and Antioxidant Activity of Stinging Nettle (Urtica dioica L.) Herba Pol. 2009;55:84–93. []
166. Radman S., Zutic I., Fabek S., Zlabur J., Benko B., Toth N., Coga L. Influence of Nitrogen Fertilization on Chemical Composition of Cultivated Nettle. Emir. J. Food Agric. 2015;27:889–896. doi: 10.9755/ejfa.2015-04-089. [CrossRef] []
167. Weiß F. Effects of Varied Nitrogen Fertilization and Cutting Treatments on the Development and Yield Components of Cultivated Stinging Nettles. Acta Hortic. 1993;331:137–144. doi: 10.17660/ActaHortic.1993.331.18. [CrossRef] []
168. Santamaria P. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006;86:10–17. doi: 10.1002/jsfa.2351. [CrossRef] []
169. Hofstra R., Lanting L., de Visser R. Metabolism of Urtica dioica as Dependent on the Supply of Mineral Nutrients. Physiol. Plant. 1985;63:13–18. doi: 10.1111/j.1399-3054.1985.tb02811.x. [CrossRef] []
170. Radman S., Fabek Uher S., Opačić N., Ivanka Ž., Benko B., Jurčić B., Šic Žlabur J. Application of biostimulants in nettle cultivation. Glasnik Zaštite Bilja. 2022;45:22–28. doi: 10.31727/gzb.45.3.3. [CrossRef] []
171. Bacci L., Di Lonardo S., Albanese L., Mastromei G., Perito B. Effect of Different Extraction Methods on Fiber Quality of Nettle (Urtica dioica L.) Text. Res. J. 2011;81:827–837. doi: 10.1177/0040517510391698. [CrossRef] []
172. Lützkendorf R., Mieck K., Reußmann T., Dreyling G., Dreyer J., Lück M. Nesselfaser-Verbundwerkstoffe für Fahrzeuginnenteile—Was können sie? Tech. Text. 2000;30–32 []
173. Amaducci S., Scordia D., Liu F., Zhang Q., Guo H., Testa G., Cosentino S. Key Cultivation Techniques for Hemp in Europe and China. Ind. Crops Prod. 2015;68:2–16. doi: 10.1016/j.indcrop.2014.06.041. [CrossRef] []
174. Baumgardner D. Stinging Nettle: The Bad, the Good, the Unknown. J. Patient-Cent. Res. Rev. 2016;3:48–53. doi: 10.17294/2330-0698.1216. [CrossRef] []
175. Kalia A., Joshi B., Mukhija M. Pharmacognostical Review of Urtica dioica L. Int. J. Green Pharm. 2014;8:201. doi: 10.4103/0973-8258.142669. [CrossRef] []
176. Suryawan I., Suardana N., Suprapta Winaya I., Budiarsa Suyasa I., Tirta Nindhia T. Study of Stinging Nettle (Urtica dioica L.) Fibers Reinforced Green Composite Materials: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2017;201:012001. doi: 10.1088/1757-899X/201/1/012001. [CrossRef] []
177. Dhouibi R., Affes H., Ben Salem M., Hammami S., Sahnoun Z., Zeghal K., Ksouda K. Screening of Pharmacological Uses of Urtica dioica and Others Benefits. Prog. Biophys. Mol. Biol. 2020;150:67–77. doi: 10.1016/j.pbiomolbio.2019.05.008. [PubMed] [CrossRef] []
178. Wang J., Zhu M., Outlaw R., Zhao X., Manos D., Holloway B., Mammana V. Free-Standing Subnanometer Graphite Sheets. Appl. Phys. Lett. 2004;85:1265–1267. doi: 10.1063/1.1782253. [CrossRef] []
179. Fan H., Shen W. Carbon Nanosheets: Synthesis and Application. ChemSusChem. 2015;8:2004–2027. doi: 10.1002/cssc.201500141. [PubMed] [CrossRef] []
180. Veca L., Meziani M., Wang W., Wang X., Lu F., Zhang P., Lin Y., Fee R., Connell J., Sun Y. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Adv. Mater. 2009;21:2088–2092. doi: 10.1002/adma.200802317. [CrossRef] []
181. Nuilek K., Simon A., Baumli P. Synthesis and Characterization of Carbon Nanosheets from Stinging Nettle (Urtica dioica) IOP Conf. Ser. Mater. Sci. Eng. 2019;613:012017. doi: 10.1088/1757-899X/613/1/012017. [CrossRef] []
182. Bodros E., Baley C. Study of the Tensile Properties of Stinging Nettle Fibres (Urtica dioica) Mater. Lett. 2008;62:2143–2145. doi: 10.1016/j.matlet.2007.11.034. [CrossRef] []
183. Bogard F., Bach T., Abbes B., Bliard C., Maalouf C., Bogard V., Beaumont F., Polidori G. A Comparative Review of Nettle and Ramie Fiber and Their Use in Biocomposites, Particularly with a PLA Matrix. J. Nat. Fibers. 2021:1–25. doi: 10.1080/15440478.2021.1961341. [CrossRef] []
184. Fischer H., Werwein E., Graupner N. Nettle Fibre (Urtica dioica L.) Reinforced Poly(Lactic Acid): A First Approach. J. Compos. Mater. 2012;46:3077–3087. doi: 10.1177/0021998311435676. [CrossRef] []
185. Ketema A., Worku A. Antibacterial Finishing of Cotton Fabric Using Stinging Nettle (Urtica dioica L.) Plant Leaf Extract. J. Chem. 2020;2020:4049273. doi: 10.1155/2020/4049273. [CrossRef] []
186. Masłowski M., Aleksieiev A., Miedzianowska J., Strzelec K. Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites. Materials. 2021;14:1616. doi: 10.3390/ma14071616. [PMC free article] [PubMed] [CrossRef] []
187. Mudoi M.P., Sinha S., Parthasarthy V. Polymer Composite Material with Nettle Fiber Reinforcement: A Review. Bioresour. Technol. Rep. 2021;16:100860. doi: 10.1016/j.biteb.2021.100860. [CrossRef] []
188. Suomela J.A., Vajanto K., Räisänen R. Seeking Nettle Textiles—Utilizing a Combination of Microscopic Methods for Fibre Identification. Stud. Conserv. 2018;63:412–422. doi: 10.1080/00393630.2017.1410956. [CrossRef] []
189. Suryawan I., Suardana N., Winaya I., Suyasa I. A Study on Correlation between Hardness and Thermal Conductivity of Polymer Composites Reinforced with Stinging Nettle Fiber. Int. J. Civ. Eng. Technol. 2020;11:94–104. doi: 10.34218/IJCIET.11.1.2020.010. [CrossRef] []
190. Delahaye J. Ph.D. Thesis. University of Rouen; Rouen, France: 2015. Utilisations de L’ortie-Urtica dioïca L.228p []
191. De Vico G., Guida V., Carella F. Urtica dioica (Stinging Nettle): A Neglected Plant with Emerging Growth Promoter/Immunostimulant Properties for Farmed Fish. Front. Physiol. 2018;9:285. doi: 10.3389/fphys.2018.00285. [PMC free article] [PubMed] [CrossRef] []
192. Esposito S., Bianco A., Russo R., Di Maro A., Isernia C., Pedone P. Therapeutic Perspectives of Molecules from Urtica dioica Extracts for Cancer Treatment. Molecules. 2019;24:2753. doi: 10.3390/molecules24152753. [PMC free article] [PubMed] [CrossRef] []
193. Gülçin I., Küfrevioglu O., Oktay M., Büyükokuroglu M. Antioxidant, Antimicrobial, Antiulcer and Analgesic Activities of Nettle (Urtica dioica L.) J. Ethnopharmacol. 2004;90:205–215. doi: 10.1016/j.jep.2003.09.028. [PubMed] [CrossRef] []
194. Mukundi M., Mwaniki N., Piero N., Murugi N., Kelvin J., Yusuf A., Mwonjoria J., Ngetich A., Agyirifo D., Gathumbi P., et al. Potential Anti-Diabetic Effects and Safety of Aqueous Extracts of Urtica dioica Collected from Narok County, Kenya. Pharm. Anal. Acta. 2017;8:1000548. doi: 10.4172/2153-2435.1000548. [CrossRef] []
195. Taheri Y., Quispe C., Herrera-Bravo J., Sharifi-Rad J., Ezzat S.M., Merghany R.M., Shaheen S., Azmi L., Prakash Mishra A., Sener B., et al. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. Evid. Based Complement. Altern. Med. 2022;2022:e4024331. doi: 10.1155/2022/4024331. [PMC free article] [PubMed] [CrossRef] []
196. Bourgeois C., Leclerc E., Corbin C., Doussot J., Serrano V., Vanier J., Seigneuret J., Auguin D., Pichon C., Lainé E., et al. Nettle (Urtica dioica L.) as a Source of Antioxidant and Anti-Aging Phytochemicals for Cosmetic Applications. C. R. Chim. 2016;19:1090–1100. doi: 10.1016/j.crci.2016.03.019. [CrossRef] []
197. Fischer A., Brodziak-Dopierała B., Loska K., Stojko J. The Assessment of Toxic Metals in Plants Used in Cosmetics and Cosmetology. Int. J. Environ. Res. Public Health. 2017;14:1280. doi: 10.3390/ijerph14101280. [PMC free article] [PubMed] [CrossRef] []
198. Knoth D., Alnemari R.M., Wiemann S., Keck C.M., Brüßler J. Fingerprint of Nature—Skin Penetration Analysis of a Stinging Nettle Plant Crystals Formulation. Cosmetics. 2021;8:21. doi: 10.3390/cosmetics8010021. [CrossRef] []
199. Ankarcrona J. Ph.D. Thesis. Swedish University of Agricultural Sciences; Uppsala, Sweden: 2019. Urtica dioica, a Weed with Many Possibilities. []
200. Chakravartula N.S.S., Moscetti R., Farinon B., Vinciguerra V., Merendino N., Bedini G., Neri L., Pittia P., Massantini R. Stinging Nettles as Potential Food Additive: Effect of Drying Processes on Quality Characteristics of Leaf Powders. Foods. 2021;10:1152. doi: 10.3390/foods10061152. [PMC free article] [PubMed] [CrossRef] []
201. Maietti A., Tedeschi P., Catani M., Stevanin C., Pasti L., Cavazzini A., Marchetti N. Nutrient Composition and Antioxidant Performances of Bread-Making Products Enriched with Stinging Nettle (Urtica dioica) Leaves. Foods. 2021;10:938. doi: 10.3390/foods10050938. [PMC free article] [PubMed] [CrossRef] []
202. Zeipina S., Alsina I., Lepse L. Stinging Nettle—The Source of Biologically Active Compounds as Sustainable Daily Diet Supplement. Res. Rural Dev. 2014;1:34–38. []
203. Grela E., Krusiński R., Matras J. Efficacy of Diets with Antibiotic and Herb Mixture Additives in Feeding of Growing-Finishing Pigs. J. Anim. Feed Sci. 1998;7:171–175. doi: 10.22358/jafs/69965/1998. [CrossRef] []
204. Lötscher Y., Kreuzer M., Messikommer R. Utility of Nettle (Urtica dioica) in Layer Diets as a Natural Yellow Colorant for Egg Yolk. Anim. Feed Sci. Technol. 2013;186:158–168. doi: 10.1016/j.anifeedsci.2013.10.006. [CrossRef] []
205. Milosevic B., Omerovic I., Savic Z., Andjusic L., Milanovic V., Ciric S. Stinging Nettle (Urtica dioica) in Broiler Nutrition. Worlds Poult. Sci. J. 2021;77:901–912. doi: 10.1080/00439339.2021.1963645. [CrossRef] []
206. Nasiri M., Azizi K., Hamzehzarghani H., Ghaderi R. Studies on the Nematicidal Activity of Stinging Nettle (Urtica dioica) on Plant Parasitic Nematodes. Arch. Phytopathol. Plant Prot. 2014;47:591–599. doi: 10.1080/03235408.2013.816080. [CrossRef] []
207. Bensadoun F., Verpoest I., Baets J., Müssig J., Graupner N., Davies P., Gomina M., Kervoelen A., Baley C. Impregnated Fibre Bundle Test for Natural Fibres Used in Composites. J. Reinf. Plast. Compos. 2017;36:942–957. doi: 10.1177/0731684417695461. [CrossRef] []
208. Maričić B., Radman S., Romić M., Perković J., Major N., Urlić B., Palčić I., Ban D., Zorić Z., Ban S.G. Stinging Nettle (Urtica dioica L.) as an Aqueous Plant-Based Extract Fertilizer in Green Bean (Phaseolus vulgaris L.) Sustainable Agriculture. Sustainability. 2021;13:4042. doi: 10.3390/su13074042. [CrossRef] []
209. Bos H. Ph.D. Thesis. Technische Universiteit Eindhoven; Eindhoven, The Netherlands: 2004. The Potential of Flax Fibres as Reinforcement for Composite Materials. [CrossRef] []
210. Cheng Y., Tang X., Gao C., Li Z., Chen J., Guo L., Wang T., Xu J. Molecular Diagnostics and Pathogenesis of Fungal Pathogens on Bast Fiber Crops. Pathogens. 2020;9:223. doi: 10.3390/pathogens9030223. [PMC free article] [PubMed] [CrossRef] []
211. Kumar S., Gangil B., Singh Mer K., Gupta M., Patel V. Hybrid Fiber Composites. John Wiley & Sons, Ltd.; Weinheim, Germany: 2020. Bast Fiber-Based Polymer Composites; pp. 147–167. []
212. Paukszta D., Mańkowski J., Kołodziej J., Szostak M. Polypropylene (PP) Composites Reinforced with Stinging Nettle (Urtica dioica L.) Fiber. J. Nat. Fibers. 2013;10:147–158. doi: 10.1080/15440478.2013.789287. [CrossRef] []
213. Lanzilao G., Goswami P., Blackburn R. Study of the Morphological Characteristics and Physical Properties of Himalayan Giant Nettle (Girardinia diversifolia L.) Fibre in Comparison with European Nettle (Urtica dioica L.) Fibre. Mater. Lett. 2016;181:200–203. doi: 10.1016/j.matlet.2016.06.044. [CrossRef] []
214. Bourmaud A., Beaugrand J., Shah D., Placet V., Baley C. Towards the Design of High-Performance Plant Fibre Composites. Prog. Mater. Sci. 2018;97:347–408. doi: 10.1016/j.pmatsci.2018.05.005. [CrossRef] []
215. Baley C. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Compos. Part A Appl. Sci. Manuf. 2002;33:939–948. doi: 10.1016/S1359-835X(02)00040-4. [CrossRef] []
216. Baley C. Fibres Naturelles de Renfort Pour Matériaux Composites. Tech. Ing. 2004:am5130. doi: 10.51257/a-v3-am5130. [CrossRef] []
217. Placet V., Trivaudey F., Cisse O., Gucheret-Retel V., Boubakar M. Diameter Dependence of the Apparent Tensile Modulus of Hemp Fibres: A Morphological, Structural or Ultrastructural Effect? Compos. Part A Appl. Sci. Manuf. 2012;43:275–287. doi: 10.1016/j.compositesa.2011.10.019. [CrossRef] []
218. Cherrett N., Barrett J., Clemett A., Chadwick M., Chadwick M. Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester. Stockholm Environmental Institute; Stockholm, Sweden: 2005. []
219. Parraga-Aguado I., Querejeta J., González-Alcaraz M., Jiménez-Cárceles F., Conesa H. Usefulness of Pioneer Vegetation for the Phytomanagement of Metal(Loid)s Enriched Tailings: Grasses vs. Shrubs vs. Trees. J. Environ. Manag. 2014;133:51–58. doi: 10.1016/j.jenvman.2013.12.001. [PubMed] [CrossRef] []
220. Parmar S., Singh V. Phytoremediation Approaches for Heavy Metal Pollution: A Review. J. Plant Sci. Res. 2015;2:139. []
221. Antoniadis V., Shaheen S.M., Stärk H.-J., Wennrich R., Levizou E., Merbach I., Rinklebe J. Phytoremediation Potential of Twelve Wild Plant Species for Toxic Elements in a Contaminated Soil. Environ. Int. 2021;146:106233. doi: 10.1016/j.envint.2020.106233. [PubMed] [CrossRef] []
222. Shams K., Tichy G., Fischer A., Sager M., Peer T., Bashar A., Filip K. Aspects of Phytoremediation for Chromium Contaminated Sites Using Common Plants Urtica dioica, Brassica napus and Zea mays. Plant Soil. 2010;328:175–189. doi: 10.1007/s11104-009-0095-x. [CrossRef] []
223. Krystofova O., Adam V., Babula P., Zehnalek J., Beklova M., Havel L., Kizek R. Effects of Various Doses of Selenite on Stinging Nettle (Urtica dioica L.) Int. J. Environ. Res. Public Health. 2010;7:3804–3815. doi: 10.3390/ijerph7103804. [PMC free article] [PubMed] [CrossRef] []
224. Koblar A., Tavčar G., Ponikvar-Svet M. Stress Syndrome Response of Nettle (Urtica dioica L.) Grown in Fluoride Contaminated Substrate to Fluoride and Fluorine Accumulation Pattern. J. Fluor. Chem. 2015;172:7–12. doi: 10.1016/j.jfluchem.2015.01.006. [CrossRef] []
225. Codling E., Rutto K. Stinging Nettle (Urtica dioica L.) Growth and Mineral Uptake from Lead-Arsenate Contaminated Orchard Soils. J. Plant Nutr. 2014;37:393–405. doi: 10.1080/01904167.2013.859702. [CrossRef] []
226. Sharifi K., Rahnavard A., Saeb K., Gholamreza Fahimi F., Tavana A. Ability of Urtica dioica L. to Adsorb Heavy Metals (Pb, Cd, As, and Ni) from Contaminated Soils. Soil Sediment Contam. Int. J. 2022:1–34. doi: 10.1080/15320383.2022.2052263. [CrossRef] []
227. Dimitrijević V., Stanković M., Djordjevic D., Krstić I., Nikolić M., Bojić A., Krstić N. The Preliminary Adsorption Investigation of Urtica dioica L. Biomass Material as a Potential Biosorbent for Heavy Metal Ions. Stud. Univ. Babeș-Bolyai Chem. 2019;64:19–39. doi: 10.24193/subbchem.2019.1.02. [CrossRef] []
228. Ertan B., Efe D. The Adsorption Performance of Urtica dioica on the Removal of Cadmium from Aqueous Solutions. Asian J. Biotechnol. Genet. Eng. 2019;2:1–7. []
229. Bislimi K., Halili J., Sahiti H., Bici M., Mazreku I. Effect of Mining Activity in Accumulation of Heavy Metals in Soil and Plant (Urtica dioica L) J. Ecol. Eng. 2021;22:1–7. doi: 10.12911/22998993/128691. [CrossRef] []
230. Edwards S., MacLeod C., Lester J. The Bioavailability of Copper and Mercury to the Common Nettle (Urtica dioica) and the Earthworm Eisenia Fetida from Contaminated Dredge Spoil. Water Air Soil Pollut. 1998;102:75–90. doi: 10.1023/A:1004993912639. [CrossRef] []
231. Hiller E., Jurkovič Ľ., Majzlan J., Kulikova T., Faragó T. Environmental Availability of Trace Metals (Mercury, Chromium and Nickel) in Soils from the Abandoned Mine Area of Merník (Eastern Slovakia) Pol. J. Environ. Stud. 2021;30:5013–5025. doi: 10.15244/pjoes/133721. [CrossRef] []
232. Murtić S., Zahirović Ć., Čivić H., Sijahović E., Jurković J., Avdić J., Šahinović E., Podrug A. Phytoaccumulation of Heavy Metals in Native Plants Growing on Soils in the Spreča River Valley, Bosnia and Herzegovina. Plant Soil Environ. 2021;67:533–540. doi: 10.17221/253/2021-PSE. [CrossRef] []
233. Paukszto A., Mirosławski J. Using Stinging Nettle (Urtica dioica L.) to Assess the Influence of Long Term Emission upon Pollution with Metals of the Tatra National Park Area (Poland) Atmos. Pollut. Res. 2019;10:73–79. doi: 10.1016/j.apr.2018.06.004. [CrossRef] []
234. Spongberg A., Hartley L., Neher D., Witter J. Fate of Heavy Metal Contaminants in a Former Sewage Treatment Lagoon, Hancock County, Ohio. Soil Sediment Contam. Int. J. 2008;17:619–629. doi: 10.1080/15320380802425121. [CrossRef] []
235. Barboiu G., Radulescu C., Popescu I., Dulama I., Bucurică I., Teodorescu S., Ştirbescu R.-M., Stirbescu N.-M., Tanase N. Potential Health Risk Assessment Associated with Heavy Metal Accumulation in Native Urtica dioica. Rom. Rep. Phys. 2020;72:711. []
236. Boisson S., Le Stradic S., Collignon J., Séleck M., Malaisse F., Ngoy Shutcha M., Faucon M., Mahy G. Potential of Copper-Tolerant Grasses to Implement Phytostabilisation Strategies on Polluted Soils in South D.R. Congo. Environ. Sci. Pollut. Res. 2016;23:13693–13705. doi: 10.1007/s11356-015-5442-2. [PubMed] [CrossRef] []
237. Yung L. Ph.D. Thesis. University of Franche-Comté; Besançon, France: 2020. Fonctionnement et Performances Du Système Agroforestier Peuplier Ortie En Contexte de Phytomanagement. []
238. Yung L., Bertheau C., Cazaux D., Regier N., Slaveykova V.I., Chalot M. Insect Life Traits Are Key Factors in Mercury Accumulation and Transfer within the Terrestrial Food Web. Environ. Sci. Technol. 2019;53:11122–11132. doi: 10.1021/acs.est.9b04102. [PubMed] [CrossRef] []
You don't have permission to register